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Abstract

This paper is concerned with the investigation of the effective material properties of internally defective or particle-
reinforced composites. An analysis was carried out with a novel method using the two-dimensional special finite ele-
ment method mixing the concept of equivalent homogeneous materials. A formulation has been developed for a series
of special finite elements containing an internal defect or reinforcement in order to assure the high accuracy especially in
the vicinity of defects or reinforcements. The adoption of the special finite element can greatly simplify numerical mod-
eling of particle-composites. The numerical result provides the effective material properties of particle-reinforced com-
posite and explains that the size of particles has great influence on the material properties. Numerical examples also
demonstrate the validity and versatility of the proposed method by comparing with existing results from literatures.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of important research topics in composite materials is to study their effective material properties of
composites (Christensen, 1979; Hasin, 1983; Vinson and Sierakowski, 1987; Gibson, 1994). Based on dif-
ferent assumptions, different averaging methods have been derived to obtain the effective elastic properties
including differential method (Roscoe, 1952), composite spheres (cylinders) model (Hasin, 1962), self
consistent method (Budiansky, 1965; Hill, 1965), generalized self consistent method (3-phase model;
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Christensen, 1979) and Mori-Tanaka method (Benveniste et al., 1989). Meguid and Kalamkarov (1994)
developed an elastic homogenization model using the asymptotic homogenization technique.

The material properties of composites depend on the reinforced particles or fibers and are influenced by
the internal defects or reinforcement particles with different sizes, materials and geometric distribution. The
term as the size effect is used to describe such phenomena, which many engineering structures made of het-
erogeneous aggregate materials such as various particle-dispersed or fiber reinforced composites experience
the variation in their global brittleness and strength as their size of internal defects or reinforcements in-
creases. The elastic interaction of point defects was studied by Eshelby (1955) in addition to the elastic
interaction between dislocations and point defects. Recently the researches on the size effect are also fo-
cused on the facture analysis on the micro-scale including Meng et al. (2001), Saouma et al. (2002), and
Fischer et al. (2002). It is also found that such effects on nano-structured (nano-crystalline, nano-phase
or nano-composite) materials are also of great importance from both fundamental considerations and mod-
ern practice. From the viewpoint of material science, Andrievski and Glezer (2001) summed up the recent
progresses in material science on the study of the size effect on the material properties of nano-materials.
However, it seems to be likely that the understanding of the nature of size effects on nano-structured mate-
rials is not so vivid that the possibility of the prediction in this field is still limited despite a great body of
information. Up to now, nobody has noticed the size effect on effective material properties of composites
induced by internal defects or reinforcements.

In order to study the problems about composite materials, the conventional FEM is not easy to be em-
ployed due to the complex stress fields involving stress concentration and singularity. Fortunately, a special
2-D finite element containing an internal defect or reinforcement has been well developed to assure the high
precision in the vicinity of defects or reinforcements. The special element is constructed by using complex
potentials to define the stress and displacement distribution functions (inter-polation functions) inside the
element. There needs only one special element to simulate the surrounding zone of a defect or reinforcement
and thus relatively simple and coarse mesh system can be used rather than a large number of conventional
elements required in the conventional analysis. Because of the different techniques used to assure the dis-
placement continuity along the inter-clement boundary with other elements, the special finite element also
has two types: the semi-analytic type and the hybrid type. The detailed construction procedure has been
provided in other literatures (Tong et al., 1973; Tong, 1977, Piltner, 1985; Meguid and Zhu, 1995a,b; Zhang
and Katsube, 1995a,b; Soh and Long, 1999, 2000; Yang and Soh, 2001; Yang et al., 2003; Soh and Yang,
2004) and their versatility and accuracy of the proposed special element also has been demonstrated with
various examples.

In this paper, the above-mentioned two-dimensional semi-analytic special finite element method is em-
ployed to investigate the different effect including the size effect, material effect, distribution effect by inter-
nal particles as defect or reinforcement on the effective materials properties of composite panels using the
concept of equivalent homogeneous materials under averaged displacements in their appropriate edges
including the effective longitudinal/transverse Young’s modulus, the shear modulus and the Poisson’s ratio.
In order to further simplify the numerical analysis and improve the calculation accuracy, the semi-analytic
special element containing a circular hole or a circular elastic inhomogeneity has been reconstructed and a
completely new semi-analytic special element containing a circular rigid inhomogeneity has been developed.

2. Two-dimensional special finite element method
2.1. The basics of special FEM

The two-dimensional special finite element method is termed as a kind of finite element which contains
an internal inhomogeneity such as a hole, a crack, an elastic inhomogeneity and even a rigid inhomogene-



C.H. Yang et al. | International Journal of Solids and Structures 42 (2005) 6141-6165 6143

ity. Due to the implicit satisfaction of the boundary conditions in the vicinity of the internal inhomogeneity
in advance, the kind of finite element can assure to obtain a high precision in the free or inter-facial bound-
aries within the elements. Most of all, there needs only one special element to simulate the surrounding zone
of an inhomogeneity, and thus the relatively simple and coarse meshes can be used instead of a large num-
ber of conventional elements required. The computing time can be shortened greatly for complex problems
of the complicated structures containing a large quantity of dispersed defects or reinforcements as well as
composites.

The essence of the special finite element method is to use the complex potential method and conformal
mapping technique developed by Muskhelishvili (1953) in defining the displacement and stress fields within
the element. The defined displacement and stress fields as inter-polation functions must satisfy the bound-
ary conditions simultaneously around the internal inhomogeneity. The conformal mapping technique is
also employed to map the complicated internal boundaries inside the elements, such as the free boundary
of a hole or crack and the inter-facial boundary between an inhomogeneity and a matrix, into a geomet-
rically simpler boundary such as a unit circle for an original hole, a line for an original edge crack and
a ring for an original inhomogeneity. Because of the different techniques used to assure the displacement
continuity along the inter-element boundary S¢ with other elements, the special finite elements also have
two types: (a) semi-analytic type and (b) hybrid type.

2.2. A family of semi-analytic special finite elements
The present study considers only a series of the semi-analytic special finite elements as shown in Fig. 1 in

which the special elements are reconstructed using a conforming mapping technique and further develops a
completely new one containing an internal circular rigid inhomogeneity as shown in Fig. 1(c).

(c) (d)

Fig. 1. A series of rectangular semi-analytic special elements: (a) 8-node special element with a circular hole, (b) 8-node special element
with a circular elastic inhomogenity, (c) 8-node special element with a circular rigid inhomogenity, (d) 8-node degenerated special
element.
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In order to overcome the possible discontinuity of the displacement on the common boundary with con-
ventional elements, a kind of degenerated special element is employed for the one containing an internal
circular elastic inhomogeneity as shown in Fig. 1(d).

A typical special finite element shown in Fig. 1(b) has two internal regions: (a) an inhomogeneity (region
;) and (b) a matrix (region Q,,). For plane elasticity, the stress and displacement fields in these two inter-
nal regions can be well expressed in terms of the complex potentials @(z), y(z) proposed by Muskhelishvili
(1953) as follows:

0t 0y = 20() + T} )
0, — 0, + 2it,, = 2{z®"(z) + Y/ (z)} (2)
2u(uy, + iuy) = k@(z) — z@'(z) — Y (2) (3)
Fy i, = —i(0() + 2 G) + P = —il@(z) + 2@ () + F) - Cil @)

where z = x +iy; u is the shear modulus of a material; k = 3 — 4v for plane strain and x = % for plane
stress, v is the Poisson’s ratio; 4, B are the starting and end points of the integration; C, is a complex con-
stant at the datum point 4; ' and ” denote the first and second-orders of complex differentiation with respect
to z.

In order to improve the accuracy of calculation, the conformal mapping technique is then employed in
the present special elements, such as the free boundary of a hole and the inter-facial boundary between an
inhomogeneity and a matrix, to a unit circle. To consider the boundary as a circular hole with the radius py,
the mapping function f{c) can be given as

() = pos (5)

Further, the displacement and stress fields can be expressed in terms of f{c) and the analytical functions ®(c)
and (g), which are chosen in the ¢-plane as follows:

@+ﬁy:z{?gg+§%§} (©)
(w58 28] .
mwﬁmwzxao—ﬂoﬁg—w@ 8)
Fy+iF, = —i|®(cy) + f(cp) j::((;j)) +¥(ep) = Co ©)

where A4’ and B’ are corresponding to the original integration points 4 and B; C, is a complex constant.
With the polar coordinates (p, 0) introduced in the transformed domain the above-mentioned relationships
(5)—(8) can be rewritten as follows:

e ] PE) P

pt 00 z{f/(g)"_‘m} (10)
-8 28] »
wwﬁmmzeWQa@—ﬂ@?g—w@> (12
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Different complex potentials @(g) and (¢) are chosen for different forms of internal inhomogeneities as pre-
sented in Table 1. Table 2 presents various boundary conditions for different inhomogeneities embedded in
the special finite elements. Substituting the complex potentials () and y/(g) into the appropriate boundary
conditions for different special elements and comparing the coefficients of various powers of ¢'’, the differ-
ent relation between the coefficients in them can be deduced. Thus, the independent coefficients can be
determined since their number is exactly equal to the total number of degrees-of-freedom in the nodes
of the element.

Noting that in the case of an elastic inhomogeneity deduced by Meguid and Zhu (1995a,b), the null is
not appropriate to set the independent coefficients H;, M| and D; because of lacking these important sec-
ond-order terms of z in the potential functions, the related element becomes stiffer, especially in the cases
with big inhomogeneity.

Table 1

The complex potentials @(c), ¥ (c) for different inhomogeneities

No. Inhomogeneities Potentials @(g), ¥(q)
1 An internal circular hole

Ky Iy
D(¢) = Do + ZAka + ZBI(Z
= =

my ny

V) =+ Y Cuc"+ > D,c" at [c[>10
m=1 n=1

2 An internal circular elastic inhomogeneity ky Iy
By (c) = Do+ Y _ Ak + Y B!
=1 =1
my ny
U =W+ Cuc"+Y Dy at |c|> 1.0
=1 =
Py
D(g) = Pio + ZEpr
=1
Py
W () = + ZFng at0<|¢c|< 1.0
p=1
3 An internal circular rigid inhomogeneity ky Iy
D (c) = Puro + ZAka + ZBIQJ
k=1 =1
my ny
Ui(Q) =+ Cud" + > Duc” at [c[> 1.0
m=1 n=1
Table 2
Various boundary conditions for different inhomogeneities
No. Inhomogeneities Boundary conditions
1 An internal circular hole The traction-free conditions on the crack surface:
0, =1,0 =0, in the ¢-plane and F, = F, =0, in the z-plane
2 An internal circular elastic inhomogeneity The inter-facial boundary conditions for perfect bonding:
(Fy +1iF))p = (Fy +iF)); and (u + iv)), = (¢ + iv); in the z-plane
3 An internal circular rigid inhomogeneity The inter-facial boundary conditions for perfect bonding:
(u + i0)) 2 = up + i(v9—0p ¢) and F, = F, =0 in the z-plane,

where uy, vy and 6, are rigid-body displacements and rotation angle
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After using Eq. (8) for different internal regions within a typical special element containing an elastic
inhomogeneity,

UM = {MMX} = QMqM in QM (13)
UM);
us .

U, = { } =Qq, in Q (14)
Uy

where q;7 and q; are the column matrices consisting of the unknown complex coefficients in the regions Q,,
and Qj, respectively; Q,, and Q; are the corresponding displacement matrices as Q) = { Qix  Quyp }T,
Q[ - {Q]X ij }T.

Further, Eq. (14) can be rewritten as

Wy ={¥} ~ i) - @Imla) o (15)

where [T,] is the relationship matrix between {qa,} and {q,}.
The nodal displacement vector {U}° of a rectangular 8-node element is defined as

{UF =1 @) @, @), - @ O (16)
where (u); and (v); are the x and y displacement components of node i (i = 1,...,8), respectively. Substitut-
ing the nodal displacements at all the eight nodal points of the element into Eq. (13), we obtain

{U}* = [, {a,} (17)
where [Q] = { (Q); ()1 (), (Rip)y -+ (Qu)s  (Rup)s }T

Further,
{a,} = [, {U)° (18)

Substituting Eq. (18) into Eqgs. (13) and (14), the displacement fields at any point within the element can be
expressed in terms of the nodal displacement vectors as follows:

(W) = {2 = o] U) = M) (19)
i ={} = eamies) (v = i) (20)

where [Nyl,,,, = [Qu] [QL]” and [N/],.,, = [][T] [qu]*1 are the element shape functions according to
the conventional FEM.

According to the standard finite element approach, the strain vectors €,, and €p at any point inside the
element can be obtained as follows:

o S
Erge Ox Ox
o= o b= 0 2| quy= | Zw @7 (U} = BuJ{U) 1)
dy dy M
Eey a2 0y, 0Qyy,
| 0y Ox ] L Oy ox |
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o, 00,
e Ox Ox
o Ix
0 ag[)’ e 1—1 e €
{e}=q & ¢ = &l U= o [y {U}=[BJ{U’} (22)
Vi 2 2 Q, o0,
dy 0 oy Ox

where [B,,] and [B;] are the so-called element strain-displacement matrices.
Directly from the nodal force equilibrium,

/ / oldA° = [F] (23)

where B and F are stress and nodal force vectors, respectively. If the stress vector in (23) is replaced by the
strain vector and the elastic matrix D, we have

[ [ mrmmas|w =@ or ki) = r) 4

Thus, considering the different parts of special elements occupied by different materials, the element stiffness
matrix can be deduced as

Ki= [ BB = [ ] B DB [ | BB (25)

where [D,,] and [D;] are the element elasticity matrices; ¢ is the plate thickness; 4°, 4,, and A; are the area
of the whole element, the area of its matrix part and the area of its inhomogeneity part, and A° = 4, + A;.
Noting that as for the cases the special element containing a hole or a rigid inhomogeneity, the element
stiffness matrix should be degenerated as

KJ: = [ (B DBl (26)

where [D] = [DyJ; [B] = [Bagh 45 = Ay.

On the basis of degenerated element according to Eq. (25), the degenerated homogeneous element can be
also developed by setting A; =0 or D;, = D; and this element will have the same displacement distribution
along their common boundary with the corresponding special elements and thus there will be no such prob-
lems of possible displacement discontinuity along the inter-element boundaries in the FE models using spe-
cial finite elements mixed with degenerated homogeneous elements.

2.3. Comparison between the different semi-analytic special elements proposed

All of three above-mentioned special elements will be employed in the present numerical analysis. Even
though the hole and the rigid inhomogeneity can be regarded as two extreme cases of the elastic inhomo-
geneity, the special element containing an inhomogeneity cannot properly replace the other two ones by
setting the extreme values of the material properties of the internal inhomogeneity as G =0 and G = oo.
According to Eq. (25), the quantity scale of G and y; or E; will keep the same and thus the second term
in the right side of Eq. (25) will not disappear automatically. In another word, even though a relatively
small or big number of u; or E; can be set very well, we still cannot obtain the more accurate solutions
in the cases of the hole and the rigid inhomogeneity using Eq. (25) due to its harder element stiffness.

For an example, a square panel is considered with a circular hole, a circular elastic homogeneity and
a rigid homogeneity subjected to uniaxial tension in the y-direction, their stresses at § = 0° and 90° and
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Table 3
Results of stresses along the internal boundaries using different special finite element (pg=0.25, a=5b=20, oo =1, E;, =100,

No. Cases a,/09 0 (°)
0 90
1 Circular hole g, 0 0
ap 3.0830 —1.0349
Circular elastic inhomogeneity (E;=1x107°, v;=0) g, 0 0
ap 3.0010 —1.0006
Exact solutions a, 0 0
ap 3.0000 —1.0000
2 Circular elastic inhomogeneity (E; = 1x 10°, v;= 0) g, —0.03311 1.4767
ap —0.07727 0.6329
Circular rigid inhomogeneity g, —0.03312 1.4767
7 —0.07727 0.6329
Exact solution g, —0.03333 1.4778
ap —0.07778 0.6333

deformations have been compared with each other. As presented in Table 3, all of three special elements
can assure good solutions of stresses along the internal boundaries while the special element containing
an elastic inhomogeneity at two approximately extreme cases for the other two cannot assure reasonable
results for displacements. Moreover, as for these two special finite elements containing an internal hole
or a rigid inhomogeneity, the calculation of element stiffness matrixes needs only integration in the matrix
part and thus it reduces the CPU time greatly. That is why two special finite elements containing an internal
hole or a rigid inhomogeneity have been specially developed.

3. Effective material properties of composites
3.1. Material properties of composite materials

In order to consider a composite with randomly-dispersed particles or a cross-section of fiber reinforced
composite as shown in Fig. 2, the composite material can be regarded as a typical anisotropic material in a
simple two-dimensional state of stress or strain. For the sake of simplicity of the corresponding analyses,
only a series of square composite panels are considered.

According to the anisotropic stress—strain relationships in the principal material coordinates, there are
only six independent material constants such as the longitudinal modulus E;, the transverse modulus FE,,

o 4 Q Qcﬂd);éo O O O
~ |ooocoo| |O O O
O °g ocoooco | O O O

@) (b) (©)

Fig. 2. The mathematical models of a square composite panel.
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Fig. 3. The mathematical models to define the material properties of composites.

the major shear modulus Gi,, the minor shear modulus G»;, the major Poisson’s ratio v;», and the minor
Poisson’s ratio v,;. Further as the case shown in Fig. 2(c), if the distributions of the internal defects or rein-
forcements are evenly both in x- and y-direction, only three material constants of the Young’s modulus
E, = E,, the shear modulus G|, = G, and the Poisson’s ratio v, = v,; are independent.

In order to determine the above-mentioned material constants, different mathematical models are needed
as shown in Fig. 3(a)—(d).

3.2. Effective properties of equivalent homogeneous materials

The concept of the equivalent homogeneous materials under averaged displacement is introduced to
scale the material properties of the plates containing different inhomogeneity. The equivalent homogeneous
material has the same geometrical dimensions as the original one but without any inhomogeneities and thus
it has different material properties. Its effective material properties, including the effective elastic modulus
E., Poisson’s ratio v, and shear modulus G, have been introduced and they can be calculated with the cor-
responding theory from the so-called averaged displacements and rotation angle #, vand ¢ along the differ-
ent, appropriate edges of big plates. According to the related theory of plane elasticity (Timoshenko and
Goodier, 1970), to consider the plane stress problem of a big plate without any inhomogeneities under
uniaxial tension, the related Airy stress functions can be given as

1

2 :E(fly2
1
W, :Eazxz
(27)
V] —lr X
373 12Xy
1
Yy = 5 TXy

which obviously satisfies the biharmonic equation Vzl//,- =0,i=1,2,3,4,0,=0,, 0o=0,,

T2 = Txy and
T21 = Tyx-

After applying the stress—displacement relationship of plane problem, the displacement fields of a plate
under uniaxial tension in the x- or y-direction in plane stress and plane strain are obtained as follows,

respectively,
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1
Uy :EO'NC
v
U = —EO'ly
v
Uy = —EGQX
1
(%) —EO'Zy
or
u :l(l —v)ox
E

1
= _E(l + v)vayy

Uy = _E(l + v)vayx

1
vy = E(l — oy

Further to calculate the effective longitudinal elastic Young’s moduli E., i =1,2 and Poisson’s ratio

i
e’

v

i = 1,2, the corresponding reference points A4, (a, 0) and B, (0, b) are selected. The averaged displace-

ments i, and 7, at x- and y-directions along the edge with point 4, and #p and vz at x- and y-directions
along another edge with B can be calculated from the above-mentioned finite element models using special

finite element in the previous section. So, for plane stress problems

| 1
E,=—o0a
Uy

= 1
1 _ _UBEe
O']b
1
Eg :_—(sz
Up
= 2
2 uAEe
V= ———
ora

and, for plane strain problems,

o
b

vl= _
u
1+ |2

EBG

1 1
E'=—[1—0)]oa or E'=——(1+v)viab

[§

ZT‘A Up
v2 —
1+ |2+
A
1 1
El=—[1- (vz)z}azb or E2=——(1+v)viosa
Up Uy

(34)

(35)

As the cases under shear loads shown in Fig. §(c) and (d), the effective in-plane shear moduli can be cal-

culated directly according to the following formulas
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G2 =12 36
c =5 (36)
and
21 _ 121
Ge -z (37)
V21

where 7, and 7, are the average composite shear stresses in the 12 and 21 planes over the edge with point
A, respectively; 7,, = 2€;, and 7,; = 2, are the average engineering shear strains in the 12 and 21 planes
over the edge with point A4, respectively.

3.3. Bounds of effective material properties

According to the basic ideas and methods in mechanics of composite materials, the corresponding upper
and lower bounds of the effective material properties also can be calculated through the above-mentioned
method by selecting those appropriate points in the appropriate edges, which have the minimum and max-
imum values of displacements u and v in different directions. Thus, the upper bound of the effective elastic
module E, and Poisson’s ratio v, can be obtained,

1

EE = apa (38)
UMIN
vmiNnEe
- (39)
and
U 1
Ve = ] —MN b (40)
UMIN @
1
EY = (1 —2)aga (41)
UMIN
or
E! = — (14 ve)veaob (42)
UMIN

and further, the lower bound of the effective elastic module E, and Poisson’s ratio v, can be obtained too,
respectively,

1
Ei‘ = ooa (43)
UMAX
L vmaxEe
_ _ bmaxke 44
ok = - (44)
and
1
ek gy #3)
UMAX 4@
1
Er = (1 —v3)aga (46)
UMAX
or
1
Er=— (1 + ve)veaoh (47)

UMAX
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As for shear modulus, the bounds of effective in-plane shear moduli can be calculated directly according to
the following formulas:

GE _ :lZMIN (48)
Y12 MIN
and
Gl — T12 MAX (49)

712 MAX
Thus, on the basis of the averaged displacements/strains along the appropriate edges of a composite panel
from FE models, all its elastic material constants and even their bounds can be determined.
4. Numerical examples
4.1. Finite element models using defect/reinforcement finite elements
In order to consider a series of big plates with different inhomogeneities subjected to uniaxial tension,

their corresponding 2-D linear finite element models with coarse meshes using 8-node special elements have
been built up and shown in Figs. 4 and 5. Note that, only the special elements are used in the finite element

- - - - «—| © 0O 0 OO0 |,
- . - O O O . -« O O O O 0O O |(»
- - - - -— O O O O O 0O (»
- > «— O O O l» < oo0oo0o0o0o0/»
(@) (b) (c)
bl T = Tolololololololo
< . > «440{0{0{010101010 >
- ., » <Jojofojoiotoioiot»
< o < . +01010i{0jojototor>
- L <401010{010{010{0 >
- M » <4010{0}010{010}0>
D ., - O O O > =ojojojoiofojo{ot>
~ - . =<1{0{0{010{0101010>
(d) (e) ()

Fig. 4. A series of square panels with uniformly-distributed internal inhomogeneities at different scales and their finite element meshes
using 8-node defect/reinforcement finite elements: (a) square panel with one defect/reinforcement, (b) a square panel with multiple
defects/reinforcements, (c) a square panel with a lot of small defects/reinforcements, (d) FE mesh of a square panel with one defect/
reinforcement, (¢) FE mesh of a square panel with multiple defects/reinforcements, (f) FE mesh of a square panel with a lot of small
defects/reinforcements.
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Fig. 5. A series of panels with internal inhomogeneities and their finite element meshes using 8-node defect/reinforcement finite
elements: (a) a square panel with multiple defects/reinforcements, (b) FE mesh of a square panel with multiple defects/reinforcements.

meshes and thus these models are easy to generate even in the case of those plates with a large amount of
internal inhomogeneities.

As for the different cases of the plates with the different numbers of the internal defects/reinforcements,
their numbers has been set appropriately to assure the volume fraction y as a constant or a variable. At the
present analysis, the amounts of the internal inhomogeneities are varied from 1x 1, 3x 3, 5x 5, 10 x 10,
20 x 20, 50 x 50, and 100 x 100 (uniformly distributed) or 16 and 41 (not uniformly distributed). In all cases,
the numbers of the internal inhomogeneities are exactly equal to those of special elements in the present
models just because there is only one special element needed to simulate the vicinity of an inhomogeneity.
Note that in the case of a large amount of inhomogeneities, it is almost impossible to generate the corre-
sponding finite element models to process the same analysis using conventional elements for such compli-
cated problems related to stress concentration or stress singularity.

For the sake of simplicity of these analyses, the internal inhomogeneities are arranged evenly and the
internal inhomogeneities are only in the form of a circular hole, circular elastic inhomogeneity including
two cases, defect or reinforcement, and circular rigid inhomogeneity. Although the corresponding 2-D
problems of a particle-dispersed composite material should be regarded as a plane stress problem and those
about the fiber composite materials should be treated as a plane strain problem, only the plane strain prob-
lem is to be analyzed in the present studies.

In all the present plane strain analyses of large plates with different inhomogeneities, the geometrical
parameter of the plates is 20 X 20 or 40 x 20 (length x width), and the remote uniform stress applied was
oo = 1 along one edge of these plates in the horizontal direction. The material constants of the surrounding
matrix in all large plates were assumed to be Ep; =1 and v;;= 0.3, and it just needs to adjust the elastic
modulus E; of the elastic inhomogeneity and further obtain the different shear modulus ratio I' = % of
the inhomogeneity and the matrix if need. As for the material properties of different inhomogeneities as
circular elastic inhomogeneities, they have different values in the two cases: (a) defect (soft inhomogeneity),
I' is selected as 0.5; and (b) reinforcement (stiff inhomogeneity), it is set to 5 and 50, respectively.

4.2. Size effects of internal particles in a series of big composite panels

4.2.1. Size effects with different volume fractions between inhomogeneities and matrix

The size effect of internal particles is considered to demonstrate the validity of the above-mentioned finite
element model designed using defect/reinforcement finite elements in some cases of fiber-composite mate-
rials with the different volume fraction. First, the analysis considers the case with 1 x 1 inhomogeneity
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Fig. 6. Numerical results of the effective Young’s ratio E./E,; and Poisson’s ratio v./v,, of the plates containing an inhomogeneity
versus different volume fraction y: (a) Eo/Eyy, (b) ve/vas.

shown in Fig. 4(d). The corresponding results are given in Fig. 6(a) and (b) for the effective elastic modulus
ratio E./E,; and the effective Poisson’s ratio v./v,, of the plates containing only one defect/reinforcement
with varying the volume fraction 7.
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Secondly, in order to demonstrate the validity of the present finite element models, the case with 3 x 3
inhomogeneities are selected with the same material properties and the distribution of reinforcements given
by Meguid and Zhu (1995a,b) as shown in Fig. 4(e). Numerical results of the effective material properties
including the effective elastic modulus ratio E./E,; are compared with those from analytical procedures
including an extreme solution provided by Christensen (1990), an analytical solution obtained by Meguid
and Kalamkarov (1994) using the technique of asymptotic homogenization, and the numerical solutions by
Meguid and Zhu (1995a,b), as shown in Fig. 7 that explains the validity of the solutions and the numerical
results obtained using the present reconstructed special element are in good agreement with the low bound
at the small volume fraction (y = 0.4).

The corresponding results are given in Figs. 811 for both the effective elastic modulus ratio E./E;,
and the effective Poisson’s ratio v./vy, of the plates containing multiple inhomogeneities of 3 x 3,
10 x 10, 20 x 20 and 100 x 100 with the variation of the volume fraction 7. In these above-mentioned
cases, the internal inhomogeneities are distributed uniformly and thus only three material constants
are independent such as Youngs modulus E; = E,, shear modulus G, = G,;, Poisson’s ratio
vi» = ¥»1. From these numerical results, the arrangement of internal inhomogeneities will greatly influ-
ence the mechanical behavior of the whole composite material and the effective Poisson’s ratio varies
greatly with different arrangements of internal inhomogeneities while the effective Young’s modulus is
insensitive.

In other cases of a square panel as given in Fig. 5(b), the arrangement of internal inhomogeneities is not
evenly distributed along both the x- and y-directions and their effective longitudinal elastic modulus ratio
E./E,; and Poisson’s ratio v./v,, with the variation of the volume fraction y are given in Fig. 12.
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Fig. 7. Comparison of the numerical results of effective elastic modulus ratio E./E,; of the plates containing 9 (3 x 3) inhomogeneities
versus different volume fraction y (Egx = 73 GPa, vg =0.23 and E,, = 3.43 GPa, v;, = 0.35).
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Fig. 8. Numerical results of the effective elastic modulus ratio E./E,,; and Poisson’s ratio v./v,, of the plates containing 9 (3 x 3)
inhomogeneities versus different volume fraction y: (a) Eo/Eyy, (b) ve/vas.

From these numerical results, the arrangement of internal inhomogeneities has greatly influenced the
mechanical behavior of the whole composite material, especially on the effective Poisson’s ratio as shown
in Figs. 12 and 13. Similarly, the effective Poisson’s ratio varies greatly with different arrangements of inter-
nal inhomogeneities while the effective Young’s modulus is relatively insensitive.
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Fig. 9. Numerical results of the effective elastic modulus ratio E./E,; and Poisson’s ratio v./v,, of the plates containing 100 (10 x 10)
inhomogeneities versus different volume fraction y: (a) Eo/Eyy, (b) ve/vas.

4.2.2. Size effects with constant volume fractions between inhomogeneities and matrix

From the numerical results as shown in the previous section, the size effect of the internal inhomogene-
ities in the composites on the material response is significant and obviously cannot be neglected. At the con-
stant volume fraction, several cases of square plates containing uniformly distributed inhomogeneities but
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Fig. 10. Numerical results of the effective elastic modulus ratio E./E,, and Poisson’s ratio v./v,; of the plates containing 400 (20 x 20)
inhomogeneities versus different volume fraction y: (a) Eo/Eyy, (b) ve/vas.

with different numbers (including 1 x 1, 3 x 3, 5x 5, 10 x 10, 20 x 20, 50 x 50 and 100 x 100) are considered
again to identify the size effect.

The numerical results have been provided in Tables 4-8 for effective Young’s moduli and Poisson’s ratios
with different internal inhomogeneities and different material properties. From these results, their variation
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Fig. 11. Numerical results of the effective elastic modulus ratio E./E,; and Poisson’s ratio v./v,, of the plates containing 10,000
(100 x 100) inhomogeneities versus different volume fraction y: (a) Eo/Eyy, (b) ve/vas.

with changing the number of the internal inhomogeneities and their material properties is quite remarkable,
complex with the complicated behavior.

It is noted that the numerical results for v./v,, become unstable in all cases of relatively big internal inho-
mogeneities, especially with volume fraction y of 0.5 or 0.6 due to the great influence and interference along
the edges of the plates. However, the numerical results on E./E,, is kept stable in all analysis cases.
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Fig. 12. Numerical results of the effective elastic modulus ratio E./E,, and Poisson’s ratio v./v,, of the plates containing 41
inhomogeneities versus different volume fraction y: (a) E./Eyy, (b) ve/vas.

According to the results from the 1 x 1 meshes to the 100 x 100 meshes, the maximum discrepancies of
the effective Young’s moduli and Poisson ratios are 109.2% and 28.4% (I" = 0); 7.7% and 7.6% (I" = 0.5);
57.0% and 19.7% (I =15); 220.0% and 47.1% (I' =50); 215.4% and 64.9% (I = 0), respectively.
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Fig. 13. Numerical results of the effective elastic modulus ratio E./E,; and Poisson’s ratio v./v,, of the plates containing 16
inhomogeneities versus different volume fraction y: (a) Eo/Eyy, (b) ve/vas.

Consequently, the size effect on the effective Young’s module and Poisson ratio are critical and the related
material properties are quite different due to the different size of the internal defect.
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Table 4

Size effects of effective Young’s moduli and Poisson’s ratios indicated by internal defects (circular holes: I' = 0)

Volume fractions Material constants Mesh

1x1 3x3 5%5 10x 10 20 x 20 50 x 50 100 x 100

0.1 E./Ey 0.7869 0.73259 0.72657 0.72436 0.72414 0.72433 0.72445
Vel Var 0.7207 0.87076 0.89662 0.91312 0.9202 0.92403 0.92524

0.2 EJEy 0.6108 0.57116 0.56652 0.5648 0.56467 0.56487 0.56498
Vol Var 0.6593 0.78462 0.80377 0.81459 0.81843 0.82016 0.82064

0.3 EJ/Ey 0.4562 0.4504 0.44934 0.44907 0.44924 0.44947 0.44957
Vel Var 0.6703 0.69628 0.70193 0.70398 0.70384 0.70328 0.70301

0.4 EJE)y, 0.322 0.35263 0.35677 0.35943 0.36064 0.36135 0.36159
Vol Var 0.752 0.61499 0.60433 0.60431 0.60754 0.61043 0.68527

0.5 EJEy 0.2084 0.26703 0.27775 0.28701 0.29269 0.29641 0.29769
Vel Var 0.8953 0.55721 0.52977 0.56791 0.62358 0.66867 0.68527

0.6 EJE)y, 0.1208 0.1883 0.20445 0.22799 0.2378 0.24886 0.25267
Vel Var 1.057 0.53364 0.48289 0.6135 0.85202 1.04279 1.1114

Table 5

Size effects of effective Young’s moduli and Poisson’s ratios indicated by internal defects (circular defect: I' = 0.5)

Volume fractions Material constants Mesh

I1x1 3x3 5x5 10x 10 20 x 20 50 x 50 100 x 100

0.1 EJEy, 0.94987 0.92145 0.91743 0.91532 0.91462 0.91434 0.91427
Vel Var 0.96399 0.99707 1.00155 1.00394 1.00477 1.00514 1.00524

0.2 EJEy 0.89781 0.85508 0.84918 0.84618 0.8452 0.84481 0.84473
Vel Var 0.94074 0.99261 0.99942 1.00294 1.0041 1.00459 1.00472

0.3 EJEy, 0.84604 0.79738 0.79072 0.78737 0.78629 0.78587 0.78577
Vel Var 0.9311 0.98903 0.9966 1.00036 1.00152 1.00196 1.00206

0.4 EJEy 0.79652 0.74692 0.74013 0.73665 0.73559 0.73517 0.73507
Vel Var 0.93365 0.98702 0.99413 0.99745 0.99836 0.99864 0.99868

0.5 EJ/Ey 0.74869 0.70132 0.69475 0.6914 0.69035 0.68992 0.68984
Vel Var 0.94781 0.988 0.9938 0.99633 0.9969 0.99698 0.99696

0.6 EJEy 0.70279 0.6591 0.65309 0.6529 0.64901 0.64863 0.64854
Vel Var 0.97069 0.99217 0.99628 0.99679 0.99829 0.99827 0.99822

5. Conclusions

This paper introduces a new approach to evaluate the effective material properties of composites with
defect or reinforcement by utilizing a special finite element. According to the numerical results obtained
in the present numerical analysis, the following important conclusions have been obtained from different

effects of inhomogeneities in composite materials:

(1) The size effects indicated by the internal inhomogeneities in composite materials are very important

and cannot be neglected. The numerical analysis using special defect/reinforcement finite elements

developed is relatively simple, quite convenient while extremely effective and efficient for such prob-

lems, which has been mixed with the concept of effective plate.
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Table 6
Size effects of effective Young’s moduli and Poisson’s ratios indicated by internal reinforcements (circular reinforcement: I' = 5)

Volume fractions Material constants Mesh

Ix1 3x3 5x5 10x 10 20 %20 50 x 50 100 x 100
0.1 EJ/Ey 1.07523 1.14257 1.15379 1.16005 1.16232 1.16332 1.1636
Vel Var 1.04979 0.99016 0.98017 0.97447 0.97234 0.97133 0.97105
0.2 EJ/Eny 1.33703 1.32288 1.35052 1.36617 1.3721 1.37481 1.37549
ve/Var 1.08706 0.97526 0.95471 0.94272 0.93817 0.93601 0.93541
0.3 E/Ey 1.29139 1.54903 1.59749 1.6254 1.63607 1.64099 1.64231
Vel Var 1.10436 0.95513 0.92625 0.90942 0.90314 0.90024 0.89944
0.4 EJ/Ey 1.45624 1.83504 1.90886 1.95235 1.96815 1.97556 1.97766
Ve/Var 1.09467 0.9347 0.90397 0.88722 0.88172 0.87954 0.87902
0.5 EJ/Ey 1.66911 2.20774 2.31521 2.37845 2.40198 2.41334 2.41629
Vel Var 1.04808 0.9203 0.90234 0.8979 0.89938 0.90165 0.90264
0.6 EJ/Ey 1.92608 2.69409 2.85753 2.92513 2.99861 3.01851 3.02416
Vel Var 0.95482 0.91934 0.95093 0.98504 1.01615 1.03303 1.03886

Table 7
Size effects of effective Young’s moduli and Poisson’s ratios indicated by internal reinforcements (circular reinforcement: I" = 50)
Volume fractions Material constants Mesh
I1x1 3x3 5x%x5 10x 10 20 %20 50 x 50 100 x 100
0.1 E./Ey 1.10115 1.20032 1.21751 1.22725 1.23084 1.23245 1.23289
Vel Vs 1.06584 0.9824 0.96769 0.95916 0.95593 0.95439 0.95395
0.2 EJ/Ey 1.23298 1.48336 1.53191 1.56018 1.57116 1.57627 1.57758
Vel Var 1.11617 0.95192 0.9186 0.89852 0.89069 0.88693 0.88587
0.3 EJ/Ey 1.41984 1.89162 1.99142 2.05121 2.07475 2.08583 2.08883
Vel Var 1.13946 0.90512 0.85244 0.82012 0.80759 0.80168 0.80004
0.4 EJ/Ey 1.69893 2.51848 2.70743 2.82503 2.86943 2.89077 2.89691
Vel Var 1.12474 0.84555 0.78001 0.74172 0.72859 0.72322 0.72191
0.5 EJ/Eny 2.09756 3.59966 3.99121 4.24603 4.34763 4.39888 4.41268
Ve/Var 1.05764 0.78126 0.73555 0.72551 0.73164 0.73952 0.74286
0.6 EJ/Ey 2.61274 5.71111 6.83063 7.45254 8.09705 8.30095 8.35969
Vel Vs 0.92408 0.69483 0.81471 0.9692 1.10595 1.18073 1.20604

(2) The arrangement and distribution of the internal inhomogeneities are also crucial, and
thus the strength of the whole material would be changed remarkably even with the same
volume fraction in contrast with the conjectures from conventional mechanics of composite
materials.

(3) Itis granted that the defects with softer materials will make the whole plates weaker and the reinforce-
ments with harder material will make the whole plates stronger, but their variations are quite
complex.

(4) Variation of the strength of the composites containing defect or reinforcement can be scaled using the
effective material properties including the elastic modulus and the Poisson’s ratio.
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Table 8
Size effects of effective Young’s moduli and Poisson’s ratios indicated by internal reinforcements (circular rigid reinforcement: I' = co)

Volume fractions Material constants Mesh

Ix1 3x3 5x5 10x 10 20 %20 50 x 50 100 x 100
0.1 EJ/Ey 1.10434 1.21049 1.22705 1.23643 1.23994 1.24155 1.24201
Vel Var 1.06801 0.97948 0.96511 0.95675 0.95354 0.95198 0.95152
0.2 E./Ey 1.24072 1.51692 1.56253 1.5892 1.59988 1.60505 1.60641
Vel Var 1.12349 0.94229 0.91015 0.8906 0.88277 0.87886 0.87773
0.3 E./Ey 1.4337 1.96785 2.06209 2.11931 2.14281 2.15446 2.15776
Vel Var 1.16102 0.88598 0.83338 0.80023 0.78668 0.77986 0.77785
0.4 E./Ey 1.72034 2.66523 2.84859 2.96586 3.01237 3.03618 3.04336
Ve/Var 1.18002 0.81439 0.73856 0.68942 0.6696 0.65968 0.65675
0.5 EJ/Ey 2.13348 3.85605 4.24246 4.49849 4.60497 4.66135 4.67715
Vel Var 1.17792 0.73456 0.63164 0.56461 0.53829 0.52568 0.52221
0.6 E./Ey 271184 6.17832 7.20935 7.7247 8.31146 8.49708 8.55274
Vel Var 1.1656 0.67451 0.53994 0.45924 0.42341 0.41179 0.40924

(5) On different scales of the internal defects or reinforcements, the size effect should be different due to
the physical essence but the present finite element analysis based on the macro-mechanics is not able
to show those differences in detail. Especially for nano-scale problems, there should be other
approaches to set up further new models for numerical analysis based on the micro-mechanics.
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